A Hasse Principle for Quadratic Forms over Function Fields
نویسنده
چکیده
We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with reference to a set of discrete valuations of the field. This question has interesting consequences over function fields of p-adic curves. We also record some open questions related to the isotropy of quadratic forms over function fields of curves over number fields.
منابع مشابه
Quadratic Forms over Global Fields
1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...
متن کاملOutline and References for Project: Hasse Principle for Rational Function Fields,
Hasse-Minkowski’s theorem asserts that a quadratic form over a number field k admits a nontrivial zero if it does over completions at all places of k. One could look for analogues of Hasse principle for function fields. Let k be a field of characteristic not 2 and Ω a set of discrete valuations of k. Let k̂v denote the completion of k at v. We say that k satisfies Hasse principle with respect to...
متن کاملFiniteness results for regular ternary quadratic polynomials
In 1924, Helmut Hasse established a local-to-global principle for representations of rational quadratic forms. Unfortunately, an analogous local-to-global principle does not hold for representations over the integers. A quadratic polynomial is called regular if such a principle exists; that is, if it represents all the integers which are represented locally by the polynomial itself over Zp for ...
متن کاملIsotropy over Function Fields of Pfister Forms
The question of which quadratic forms become isotropic when extended to the function field of a given form is studied. A formula for the minimum dimension of the minimal isotropic forms associated to such extensions is given, and some consequences thereof are outlined. Especial attention is devoted to function fields of Pfister forms. Here, the relationship between excellence concepts and the i...
متن کاملDimensions of Anisotropic Indefinite Quadratic Forms Ii
Let F be a field of characteristic different from 2. The u-invariant and the Hasse number ũ of a field F are classical and important field invariants pertaining to quadratic forms. These invariants measure the suprema of dimensions of anisotropic forms over F that satisfy certain additional properties. We prove new relations between these invariants and we give a new characterization of fields ...
متن کامل